US009306796B1

a2 United States Patent 10) Patent No.: US 9,306,796 B1
Muttik et al. (45) Date of Patent: Apr. 5, 2016
(54) SYSTEM, METHOD, AND COMPUTER 2005/0015455 A1* 1/2005 Litl wooveercerrosesrerrreeennee 709/207
2005/0027818 Al* 2/2005 Friedmanetal. 709/217
PROGRAM PRODUCT FOR DYNAMICALLY 2005/0065899 Al 52005 Liotal
CONFIGURING A VIRTUAL ENVIRONMENT 20030262576 Al 112003 Gassoway
FOR IDENTIFYING UNWANTED DATA 2006/0036693 Al 2/2006 Hulten et al.
2006/0070130 Al 3/2006 Costea et al.
(75) Inventors: Igor G.Muttik, Berkhamsted (GB); %88?; 8(1) ?gégg ﬁ} Zgggg i/{anto_n e: a{
. . . orris et al.
Mikhail Yu. Vorozhtsov, Milton Keynes 2007/0028304 Al /2007 Brennan
(GB) 2007/0079379 Al 4/2007 Sprosts et al.
. 2007/0226804 Al 9/2007 Somkiran et al.
(73) Assignee: MecAfee, Inc., Santa Clara, CA (US) 2007/0240217 Al 10/2007 Tuvell et al.
2007/0240220 Al 10/2007 Tuvell et al.
(*) Notice: Subject to any disclaimer, the term of this 588;; 8%% ; % i} 1 é; %88; gOd'(tihet al.
: : 1M1
patent is extended or adjusted under 35 2008/0141373 Al 6/2008 Fossen et al.
U.S.C. 154(b) by 2302 days. 2008/0168533 Al 7/2008 Ozaki et al.
2008/0196099 Al 8/2008 Shastri
(21) Appl. No.: 12/050,432 (Continued)
(22) Filed: Mar. 18,2008 FOREIGN PATENT DOCUMENTS
(31) Int.Cl. WO 2011082084 A2 7/2011
GOG6F 15/16 (2006.01) WO 2011082084 A3 7/2011
HO4L 29/08 (2006.01)
(52) US.CL OTHER PUBLICATIONS
CPC .ot HO4L 29/08072 (2013.01) “VMware DiskMount Utility: User’s Manual”, http://www.vmware.
(58) Field of Classification Search com/pdf/VMwareDiskMount.pdf, 1998-2005, Revision Apr. 8,
CPC oo, HO4L 29/06; HO4L 29/08072 2005, VMware, Inc., 6 pages.
USPC 709/203, 224, 227, 228, 223 (Continued)
See application file for complete search history.
(56) References Cited Primary Examiner — Khanh Dinh
(74) Attorney, Agent, or Firm — Blank Rome LLP
U.S. PATENT DOCUMENTS
(57) ABSTRACT
6,697,948 Bl 2/2004 Rabin
6,708,212 B2* 3/2004 Porrasetal. 709/224 A system, method, and computer program product are pro-
6,981,155 B1* 12/2005 Lyleetal. ... L T726/22 vided for dynamically configuring a virtual environment for
7,095,716 B1* 82006 Keetal.cccocovvrnnne 370/230 identifying unwanted data. In use, a virtual environment
7,409,712 Bl 8; 2008 Bro‘i(ks etlal' located on a first device is dynamically configured based on at
;’; é%’gg; E% ; /38?8 gﬁilleﬁfeﬁ ot al least one property of a second device. Further, unwanted data
7.045787 B2 5/2011 Gassoway is identified, utilizing the virtual environment.
2004/0042416 Al* 3/2004 Ngoetal.cccoevvenee 370/254
2004/0203589 Al 10/2004 Wang et al. 20 Claims, 5 Drawing Sheets

REQUEST CONFIGLRATION OF THE

DESTINATION I

CONFIGURATION
RECEVED?
YES

508

510 \/ ‘1 CONFIGURE VIRTUAL ENVIRONMENT BASED ON [

DESTINATION CONFIGURATION

12 \/ ‘1 EXECUTE DATA IN THE CONFIGURED VIRTUAL [
B16

TRANSMIT DAYA TO THE
DESTINATION

NWANTED DATA”
DETECTED?
YES

514

518 PREVENT TRANSMISSION OF THE DATA TO THE
DESTINATION

US 9,306,796 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0295177 Al
2009/0044024 Al
2009/0064329 Al
2009/0088133 Al*
2009/0254992 Al

OTHER PUBLICATIONS

11/2008 Dettinger et al.

2/2009 Oberheide et al.

3/2009 Okumura et al.

4/2009 Orlassinoc.oceeens 455/411
10/2009 Schultz et al.

Wolf, Chris, Column: “Virtual Server 2005 R2 SPI Treasures: VHD
Mount”, Jun. 2007, Microsoft Certified Professional Magazine
Online, Downloaded on Feb. 27, 2008 from—http://mcpmag.com/
columns/article.asp?EditorialsID=1793—pp. 1-5.
“chroot(2)—Linux man page”’, Downloaded on Feb. 27, 2008
from—http:/linux.die.net/man/2/chroot—pp. 1-2 D.

“Linux/Unix Command: chroot”, Downloaded on Feb. 27, 2008
from—http:/linux.about.com/library/cmd/blemdl2__chroot.htm—
pp. 1-3.

Christodorescu, Miha et al. “Testing Malware Detectors”, In the
Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’04), vol. 29, Issue 4, Jul.
11-14, 2004, Boston Massachusetts, 11 pages.

“Blacklist”, Wikipedia, last modified Jun. 5, 2008, Wikipedia Foun-
dation, Inc. Downloaded from—http://en.wikipedia.org/wiki/Black-
list—, pp. 1-3.

An Architecture for Generating Semantics-Aware Signatures; Vinod
Yegneswaran, Jonathon T. Giffin, Paul Barford, Somesh Jha;
Appeared in Proceedings of Usenix Security Symposium 2005, year
2005, all pages.

Office Action Summary from U.S. Appl. No. 11/946,777 dated Jun.
13,2011.

U.S. Appl. No. 11/946,777, filed Nov. 28, 2007.

Office Action Summary from U.S. Appl. No. 11/946,777 dated Jan. 5,
2011.

U.S. Appl. No. 12/111,846, filed Apr. 29, 2008.

U.S. Appl. No. 12/131,383, filed Jun. 2, 2008.

U.S. Appl. No. 12/144,967, filed Jun. 24, 2008.

Office Action Summary from U.S. Appl. No. 12/144,967 dated Mar.
3,2011.

Non-Final Office Action, dated Jun. 24, 2011 for U.S. Appl. No.
12/111,846.

Non-Final Office Action dated Jun. 24, 2011 for U.S. Appl. No.
12/131,383.

Non-Final Office Action dated Mar. 6, 2012 for U.S. Appl. No.
12/131,383.

Non-Final Office Action dated Mar. 15, 2012 for U.S. Appl. No.
12/144,967.

U.S. Appl. No. 12/398,073, filed Mar. 4, 2009.

Non-Final Office Action dated Oct. 4, 2011 for U.S. Appl. No.
12/398,073.

Final Office Action, dated Jun. 18, 2012 for U.S. Appl. No.
12/111,846.

Final Office Action dated Jun. 28, 2012 for U.S. Appl. No.
12/131,383.

Final Office Action dated Apr. 12, 2012 for U.S. Appl. No.
12/398,073.

Advisory Action dated Jun. 5, 2012 for U.S. Appl. No. 12/398,073.
Non-Final Office Action dated Mar. 13, 2012 for U.S. Appl. No.
12/693,765.

U.S. Appl. No. 12/693,765, filed Jan. 26, 2010.

Office Action Summary from U.S. Appl. No. 12/144,967 dated Aug.
17, 2011.

Office Action Summary from U.S. Appl. No. 12/111,846 dated Nov.
15,2011.

Office Action Summary from U.S. Appl. No. 12/131,383 dated Oct.
17, 2011.

* cited by examiner

Sheet 1 of 5 US 9,306,796 B1

U.S. Patent Apr. 5,2016
102 .
, - (|
' " SERVER

NETWORK 2

102
| NETWORK 3

NETWORK 1 ‘ L

168 :: ! CLIENT

104 “SERVER

-] 106

LI Y-~

CLIENT

CLIENT

1086

100

FIGURE 1

U.S. Patent Apr. 5, 2016 Sheet 2 of 5 US 9,306,796 B1

220
NETWORK (235)
210 26 214 ,— 234
N 1o - % /
[COMMUNICATION
Roﬂ RAM ¥ |aDAPTER} | ADAPTER
/
242 |
222 238
236 |
224 \ \
I USER
DISPLAY
e e

FIGURE 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 5 US 9,306,796 B1

g{m

DYNAMICALLY CONFIGURING A
VIRTUAL ENVIRONMENT LOCATED
302 ON A FIRST DEVICE BASED ON AT

LEAST ONE PROPERTY OF A SECOND
DEVICE

Y

304 IDENTIFYING UNWANTED DATA,
\f\ UTILIZING THE VIRTUAL
. ENVIRONMENT

FIGURE 3

US 9,306,796 B1

Sheet 4 of 5

Apr. 5, 2016

U.S. Patent

()

22> (dny) ™ _

NOLLVZITYNLAIA 308N083Y

@N%M

WHLSAS ALIHNOES

HIAIADNL By

8 Euf

ANIHOVIN TWOISAHd

82

A4

ey

Yoy w

-

¥ JdNOld

{("IVH} HHAVT NOLLOVHLSEY JHVYMUHVYH

{ (dA¥) ¥3QIACNd 4
oLy NOLLVZITYNLNIA |]
iiiiiiii - 0UNOSH |
o e
\i».) J
H v X _ Y
W {aAY) HaHOLYdSIO A
u ST A WOLLYZITYRLNIA
{dnd) WIOHNOSIH P
¥IAIAOUd VEib
~N\NOLLVZITVALAIA oom:} Gadad N [
I0UNOSIY - ﬂ =1 o
I FAYMTIVIN
WILSAS ALRINDIS
AYYMIVN FHYMTVIN
WILSAS ALINNDIS

“I0d YN LHIN Y VARNA

>

80Y

>

0y

Zor

viv

U.S. Patent Apr. 5, 2016 Sheet 5 of 5 US 9,306,796 B1

STARTY 500

RECEIVED DATA?

, 502

YES
s04 /Yy T T oo Tmememmemmememe -

\ﬂ IDENTIEY DESTINATION OF DATA
e e aan e e o e A e amn 1 ——————————
506 REQUEST CONFIGURATION OF THE
DESTINATION
Y

CONFIGURATION
RECEIVED?

508

DESTINATION CONFIGURATION

;

51 2\/\ EXECUTE DATA IN THE CONFIGURED VIRTUAL
516

510 \/\ CONFIGURE VIRTUAL ENVIRONMENT BASED ON

ENVIRONMENT

< '

TRANSMIT DATATO THE NWANTED DATA
DESTINATION DETECTED?

814

YES

518 PREVENT TRANSMISSION OF THE DATATO THE
DESTINATION

US 9,306,796 B1

1
SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR DYNAMICALLY
CONFIGURING A VIRTUAL ENVIRONMENT
FOR IDENTIFYING UNWANTED DATA

FIELD OF THE INVENTION

The present invention relates to security systems, and more
particularly to security systems that employ virtual environ-
ments.

BACKGROUND

Security systems have traditionally been utilized for
detecting unwanted data. For example, security systems are
oftentimes used by gateway devices, server devices, client
devices, etc. for detecting malware. Some security systems
employ virtual environments for executing potentially
unwanted data therein, such that it may be determined (e.g.
via a behavioral analysis, etc.) whether the data is unwanted.
The unwanted data has generally included any program, code,
active content (e.g. links, uniform resource locators, etc.)
and/or any other computer readable data that is unwanted.

However, conventional techniques used by security sys-
tems that implement virtual environments have exhibited
various limitations. For example, the virtual environments
have generally been unrepresentative of an actual device on
which the potentially unwanted data may otherwise execute.
Thus, utilizing such virtual environments for detecting
unwanted data has been defective.

There is thus a need for addressing these and/or other issues
associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for dynamically configuring a virtual environment
for identifying unwanted data. In use, a virtual environment
located on a first device is dynamically configured based on at
least one property of a second device. Further, unwanted data
is identified, utilizing the virtual environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a network architecture, in accordance
with one embodiment.

FIG. 2 shows a representative hardware environment that
may be associated with the servers and/or clients of FIG. 1, in
accordance with one embodiment.

FIG. 3 shows a method for dynamically configuring a
virtual environment for identifying unwanted data, in accor-
dance with another embodiment.

FIG. 4 shows a system for dynamically configuring a vir-
tual environment for identifying unwanted data, in accor-
dance with yet another embodiment.

FIG. 5 shows a method for conditionally preventing trans-
mission of unwanted data detected utilizing a dynamically
configured virtual environment, in accordance with still yet
another embodiment.

DETAILED DESCRIPTION

FIG. 1 illustrates a network architecture 100, in accordance
with one embodiment. As shown, a plurality of networks 102
is provided. In the context of the present network architecture
100, the networks 102 may each take any form including, but

10

15

20

25

30

35

40

45

50

55

60

65

2

not limited to a local area network (LAN), a wireless network,
awide area network (WAN) such as the Internet, peer-to-peer
network, etc.

Coupled to the networks 102 are servers 104 which are
capable of communicating over the networks 102. Also
coupled to the networks 102 and the servers 104 is a plurality
of clients 106. Such servers 104 and/or clients 106 may each
include a desktop computer, lap-top computer, hand-held
computer, mobile phone, personal digital assistant (PDA),
peripheral (e.g. printer, etc.), any component of a computer,
and/or any other type of logic. In order to facilitate commu-
nication among the networks 102, at least one gateway 108 is
optionally coupled therebetween.

FIG. 2 shows a representative hardware environment that
may be associated with the servers 104 and/or clients 106 of
FIG. 1, in accordance with one embodiment. Such figure
illustrates a typical hardware configuration of a workstation
in accordance with one embodiment having a central process-
ing unit 210, such as a microprocessor, and a number of other
units interconnected via a system bus 212.

The workstation shown in FIG. 2 includes a Random
Access Memory (RAM) 214, Read Only Memory (ROM)
216, an 1/0 adapter 218 for connecting peripheral devices
such as disk storage units 220 to the bus 212, a user interface
adapter 222 for connecting a keyboard 224, a mouse 226, a
speaker 228, a microphone 232, and/or other user interface
devices such as a touch screen (not shown) to the bus 212,
communication adapter 234 for connecting the workstation to
a communication network 235 (e.g., a data processing net-
work) and a display adapter 236 for connecting the bus 212 to
a display device 238.

The workstation may have resident thereon any desired
operating system. It will be appreciated that an embodiment
may also be implemented on platforms and operating systems
other than those mentioned. One embodiment may be written
using JAVA, C, and/or C++ language, or other programming
languages, along with an object oriented programming meth-
odology. Object oriented programming (OOP) has become
increasingly used to develop complex applications.

Of course, the various embodiments set forth herein may
be implemented utilizing hardware, software, or any desired
combination thereof. For that matter, any type oflogic may be
utilized which is capable of implementing the various func-
tionality set forth herein.

FIG. 3 shows a method 300 for dynamically configuring a
virtual environment for identifying unwanted data, in accor-
dance with another embodiment. As an option, the method
300 may be carried out in the context of the architecture and
environment of FIGS. 1 and/or 2. Of course, however, the
method 300 may be carried out in any desired environment.

As shown in operation 302, a virtual environment located
on a first device is dynamically configured based on at least
one property of a second device. With respect to the present
description, the virtual environment may include any envi-
ronment that is virtually employed. For example, the virtual
environment may include a virtualization of any desired envi-
ronment (e.g. hardware environment, software environment,
etc.).

Inone embodiment, the virtual environment may include at
least one virtual machine. For example, the virtual machine
may include a software implementation of a physical device.
In another embodiment, the virtual environment may include
a virtual replica of a device (e.g. the second device, etc.). In
other embodiments, the virtual environment may include a
sandbox, an emulator, etc.

Additionally, the first device may include any device on
which the virtual environment may be located. As an option,

US 9,306,796 B1

3

the first device may be capable of employing the virtual
environment. Just by way of example, the first device may
include a server device. Of course, however, the first device
may include any of the devices described above with respect
to FIGS. 1 and/or 2.

Also, in one embodiment, the second device may be sepa-
rate from the first device. For example, the second device may
be coupled to the first device via a network (e.g. such as any
of'the networks described above with respectto FIG. 1). As an
option, the second device may include a client device, but of
course may also include any of the devices described above
with respect to FIGS. 1 and/or 2.

In another embodiment, the second device may include a
virtual device. Justby way of example, the second device may
include a virtual representation of a device (e.g. a client
device, etc.) located on the first device. Such virtual device
may be different from the virtual environment dynamically
configured based on the property of the second device.

In still yet another embodiment, the second device may
include a system of the first device. Thus, the second device
may optionally be located on the first device. Of course, it
should be noted that the second device may include any
device with at least one property based on which the virtual
environment may be dynamically configured.

Further, the property of the second device based on which
the virtual environment is dynamically configured may
include any property associated with the second device. As an
option, the property may include a dynamic property associ-
ated with the second device (e.g. a property that may change
over time, etc.). In one embodiment, the property may repre-
sent at least a portion of settings of the second device, in one
embodiment. In another embodiment, the property may rep-
resent at least a portion of a configuration of the second
device. In still yet another embodiment, the property may
represent at least a portion of a platform utilized by the second
device.

For example, the property may include a list of hardware
(e.g. hardware devices, etc.), such as hardware devices
coupled to the second device. As another example, the prop-
erty may include a list of software (e.g. drivers, applications,
etc.). The software may include any code installed on the
second device.

In yet other examples, the property may include an oper-
ating system identifier (e.g. an identifier of an operating sys-
tem of the second device, an identifier of a version of the
operating system, etc.), a patch identifier (e.g. an identifier of
a patch installed on the operating system, etc.), identifiers of
temporary network connections, registry modifications by
applications on the second device, mapped local and/or
remote drives associated with the second device, etc. As an
option, the property may include a binary representation of
any objects (e.g. hardware, software, etc.) associated with the
second device. Just by way of example, the binary represen-
tation may include a binary image of a driver, operating
system, etc. installed on the second device.

To this end, the virtual environment located on the first
device may optionally be dynamically configured based on
the property of the second device by configuring the virtual
environment to include the property. Just by way of example,
the virtual environment may be dynamically configured to
include a driver, operating system, etc. located on the second
device. As another example, the virtual environment may be
dynamically configured to include registry settings indicating
an existence of hardware coupled to the second device.

As an option, a binary representation included in the prop-
erty of the second device may be utilized for configuring the
virtual environment. For example, the binary representation

20

25

40

45

50

55

4

of'an object may be copied to the virtual environment. In this
way, the virtual environment may optionally be configured to
include the object of the second device.

In one embodiment, the virtual environment may be
dynamically configured by sending at least one request from
the first device to the second device. Such request may
include a query, for example. As another example, the request
may include a request for the property.

In another embodiment, the virtual environment may be
dynamically configured by receiving information on the
property at the first device from the second device, in
response to the request. The information may identify the
property, for example. In yet another embodiment, the infor-
mation may be utilized for dynamically configuring the vir-
tual environment (e.g. by configuring the virtual environment
to include the property indicated by the information, etc.). As
an option, the information may be cached at the first device
(e.g. for avoiding a need to subsequently request the informa-
tion from the second device, for limiting network traffic and/
or other resource consumption associated with subsequent
requests for previously received information, etc.).

Moreover, as shown in operation 304, unwanted data is
identified, utilizing the virtual environment. With respect to
the present description, the unwanted data may include any
data that is determined to be unwanted. Just by way of
example, the unwanted data may include malware (e.g. a
virus, a worm, etc.). As an option, the unwanted data may be
identified outside of the virtual environment, utilizing results
of an analysis performed via the virtual environment.

In one embodiment, the unwanted data may be identified
utilizing an analysis of data performed in the virtual environ-
ment. For example, the data may be executed in the virtual
environment. Further, a behavioral analysis may be per-
formed on the execution of the data in the virtual environ-
ment. In this way, it may be determined that behavior of the
data is unwanted, and thus that the data is unwanted. As
another example, the data in the virtual environment may be
matched with known unwanted data, for identifying the data
as unwanted.

In another embodiment, the unwanted data may be identi-
fied by analyzing data in the virtual environment, utilizing a
hierarchical data structure. Just by way of example, as the
data is executed in a first virtual machine of the virtual envi-
ronment, the execution may branch to a second virtual
machine of the virtual environment. In this way, further
execution of the data may be performed in the second virtual
machine. It should be noted that any amount of branching
may be performed.

As an option, the branching may be performed in response
to a determination that the virtual machine in which the data
is being executed does not include a property utilized by the
data. The property may include, for example, a registry, an
application, a driver, etc. Accordingly, execution of the data
may be branched to another virtual machine including such
property utilized by the data. Of course, however, it should be
noted that the unwanted data may be identified in any desired
manner.

To this end, unwanted data may be identified utilizing a
dynamically configured virtual environment. The dynamic
configuration of the virtual environment may allow the
unwanted data to be identified in a virtual environment that
replicates the second device (e.g. a configuration of the sec-
ond device, etc.), for example. In one embodiment, such
second device may include a destination for the unwanted
data, such that the unwanted data may optionally be detected
prior to communication of the unwanted data to the second
device. By dynamically configuring the virtual environment

US 9,306,796 B1

5

based on the property of the second device, the unwanted data
may optionally be executed in the virtual environment as if
the unwanted data is being executed on the second device
(e.g. by providing access by the unwanted data to properties
of the second device in the virtual environment, etc.), thus
allowing an entirety of the behavior of the unwanted data to be
realized.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing technique may or may not be implemented, per the
desires of the user. It should be strongly noted that the fol-
lowing information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 4 shows a system 400 for dynamically configuring a
virtual environment for identifying unwanted data, in accor-
dance with yet another embodiment. As an option, the system
400 may be implemented in the context of the architecture
and environment of FIGS. 1-3. Of course, however, the sys-
tem 400 may be implemented in any desired environment. It
should also be noted that the aforementioned definitions may
apply during the present description.

As shown, a server 402 is in communication with a separate
physical device 404. In one embodiment the separate physical
device 404 may include a client device. As an option, the
server 402 may be coupled to the separate physical device 404
via anetwork. Of course, it should be noted that the server 402
may be coupled to any number of separate physical devices.

The server 402 includes a security system 406. The secu-
rity system 406 may include any type of security system
capable of providing a virtual environment for detecting
unwanted data (e.g. malware, as shown). In addition, the
virtual environment provided by the security system 406
includes a plurality of virtual machines 412A-C. With respect
to the present embodiment, each of the virtual machines
412A-C replicates, at least in part, a device. The first virtual
machine 412A replicates the server 402, the second virtual
machine 412B replicates the separate physical device 404,
and the third virtual machine 412C replicates a virtual device
408 located on the server 402.

The virtual device 408 located on the server 402 may
include a virtual representation of the separate physical
device 404, as an option. Thus, the virtual device 408 may
include at least a portion of the properties of the separate
physical device 404. As another option, the virtual device 408
may include a virtual representation of an abstract device
including properties that are similar across a plurality of
separate physical devices coupled to the server 402. Of
course, however, the virtual device 408 may include any
desired properties. As yet another option, the properties of the
virtual device 408 may be periodically updated (e.g. manually
by an administrator, automatically utilizing a request, on a
schedule, etc.).

In one embodiment, the server 402 may include a gateway
to the network via which the server 402 and the separate
physical device 404 are coupled. To this end, the server 402
may optionally intercept data communicated to and/or over
the network. The data may include electronic messages, files,
etc.

Inresponseto receipt of the data, the security system 406 of
the server 402 may dynamically configure at least one of the
virtual machines 412A-C based on at least one property of an
associated device. With respect to the present embodiment,
the device may include the server 402, the virtual device 408

40

45

55

6

or the separate physical device 404. In addition, the property
may include any hardware and/or software associated with
the device.

As an option, the device may optionally include the device
to which the data is destined. For example, if the data is
destined for a device with at least some properties replicated
by the virtual device 408 located on the server 402, the third
virtual machine 412C may be dynamically configured based
on at least one property of the virtual device 408. Similarly, if
the data is destined for the separate physical device 404, the
second virtual machine 412B may be dynamically configured
based on at least one property of the separate physical device
404, and if the data is destined for the server 402, the first
virtual machine 412B may be dynamically configured based
on at least one property of the server 402.

The dynamic configuration may be performed by request-
ing the property of the device. In one embodiment, a resource
virtualization dispatcher (RVD) 414 of the security system
406 may issue the request for the property. The request may
be for a particular property, a particular type of property, or
any property associated with the device. In one embodiment,
the request may be issued to the virtual device 408 located on
the server 402 if the data is destined for a device with at least
some properties replicated by the virtual device 408, such that
resources otherwise consumed by requesting the property
from the actual device to which the data is destined may be
limited.

To this end, the request may be sent to the device from
which the property is requested. Just by way of example, the
request may optionally be sent over a network, if the device is
coupled to the server 402 via the network. Of course, how-
ever, the request may also be sent to the device internally, if
the device is located in or includes the server 402.

In response to receipt of the request by a security system
406, 418, 424 of the device from which the property is
requested, a resource virtualization provider (RVP) 416, 420,
426 of the security system 406, 418, 424 of such device
responds to the request. In one embodiment, the RVP 416,
420, 426 may identify the requested property utilizing a hard-
ware abstraction layer (HAL) 410, 422, 428 of the device. The
HAL 410, 422, 428 may optionally be utilized for interfacing
the security system 406, 418, 424 and the hardware of the
device. Thus, the HAL 410, 422, 428 may be used for iden-
tifying hardware associated with the device. For example, the
HAL 410, 422, 428 may indicate the property using an
abstraction layer used by the RVD 414 of the security system
406 of the server 402.

In another embodiment, the RVP 416, 420, 426 may iden-
tify the requested property by identifying software associated
with the device. For example, the RVP 416, 420, 426 may
utilize a registry of the device for identifying the software. Of
course however, the RVP 416, 420, 426 may identify the
property in any desired manner. It should be noted that while
the RVP 416,420, 426 is described in the present embodiment
as being utilized for identifying the property, any desired
module of a device may be utilized for identifying a property
of such device. Thus, the security system 406, 418, 424 of
each of the devices may not necessarily include the RVP 416,
420, 426.

Furthermore, the RVP 416, 420, 426 may send the
requested property to the RVD 414 of the security system 406
of the server 402. The RVD 414 may therefore utilize the
property for dynamically configuring the virtual environ-
ment. In one embodiment, the RVD 414 may use the property
for dynamically configuring the virtual machine 412A-C rep-
licating the device from which the property was received. As
an option, the RVD 414 may include or be coupled to a cache

US 9,306,796 B1

7

for storing the requested property, such that subsequent
requests for the property may be avoided.

Moreover, the security system 406 of the server 402 may
utilize the virtual environment, or optionally the particular
virtual machine 412A-C that has been dynamically config-
ured, for detecting unwanted data. For example, the data
received by the server 402 may be executed in the virtual
environment. In this way, the virtual environment may be
dynamically configured to replicate the device to which the
data is destined, such that the dynamically configured virtual
environment may be used to determine whether the data des-
tined to be executed on such device includes unwanted data.

FIG. 5 shows a method 500 for conditionally preventing
transmission of unwanted data detected utilizing a dynami-
cally configured virtual environment, in accordance with still
yet another embodiment. As an option, the method 500 may
be carried out in the context of the architecture and environ-
ment of FIGS. 1-4. For example, the method 500 may be
carried out utilizing the security system 406 of the server 402
of FIG. 4. Of course, however, the method 500 may be carried
out in any desired environment. Again, it should be noted that
the aforementioned definitions may apply during the present
description.

As shown in decision 502, it is determined whether data is
received. With respect to the present embodiment, the data
may include any data capable of being received by device on
which a virtual environment is located. For example, the data
may include an electronic message, a file, etc. Further, the
data may potentially include unwanted data. Thus, the data
may be received for analysis thereof (e.g. for detecting
unwanted data, etc.).

As an option, determining whether the data is received may
include determining whether data is received over a network.
As another option, the determination may be performed by
monitoring the receipt of data. For example, a security system
of'the device on which the virtual environment is located may
monitor the receipt of data.

If it is determined that data is not received, the method 500
continues to wait for a determination that data is received. In
response to a determination that data is received, a destination
of the data may optionally be determined. Note optional
operation 504. The destination may include any device to
which the data is destined. In the context of the present
embodiment, the destination may include a computer system
or a network of computers.

In one embodiment, the destination may be determined by
analyzing a header of the data. For example, the header may
indicate the destination of the data. Of course, however, the
destination may be identified in any manner.

Additionally, as shown in operation 506, configuration
data of'the destination is requested. The configuration data of
the destination may include any property of the destination.
As an option, the configuration data may be requested by
sending a request for such configuration data to the destina-
tion.

In another embodiment, the configuration data for any
device other than the destination may be requested. For
example, if the destination is not determined in option opera-
tion 504, the configuration data may be determined for a
device other than the destination. Just by way of example,
configuration data may be requested for a virtual device
located on the device requesting the configuration data. The
virtual device may optionally include at least a portion of the
configuration data of the destination, as an option.

As another option, the configuration data may be requested
by sending a request for such configuration data to a cache
located on the device issuing the request. Such cache may

30

40

45

55

8

store properties previously requested, for example. In one
embodiment, the cache may store properties previously
requested within a predetermined time period.

Further, as shown in decision 508, it is determined whether
the configuration data is received. For example, it may be
determined whether the configuration data requested in
operation 506 is received. If it is determined that the configu-
ration data is not received, the method 500 continues to wait
for the configuration data to be received.

If, however, it is determined that the configuration data is
received, the virtual environment is configured based on the
configuration data. Note operation 510. In one embodiment,
the virtual environment may include a virtual machine. Thus,
the virtual machine may be configured utilizing the configu-
ration data.

In another embodiment, the virtual environment may be
associated with the device from which the configuration data
was received. Just by way of example, the virtual environ-
ment may be dedicated for providing a replica of the device
from which the configuration data was received. In addition,
the virtual environment may optionally be configured by
applying the configuration data to the virtual environment. In
this way, a configuration of the virtual environment may
optionally replicate the configuration of the device to which
the data is destined and/or any other device.

Moreover, the data is executed in the configured virtual
environment, as shown in operation 512. In one embodiment,
the data may be executed by opening the data (e.g. opening an
electronic message, opening a file, etc.). In another embodi-
ment, the data may be executed by running the data (e.g. an
executable, etc.) in the virtual environment.

Accordingly, the data may optionally be executed in the
virtual environment, such that results of the execution may be
contained within the virtual environment. Thus, the device on
which the virtual environment is located may optionally be
protected from the results of the execution of the data. Addi-
tionally, the device which is replicated by the virtual environ-
ment may also be protected from the results of the execution
of'the data by executing the data in the virtual environment.

To this end, the configuration data may be requested in
response to receipt of the data, before the data is executed in
the virtual environment, as described above. As another
option however, the configuration data may be requested in
response to receipt of the data, while the data is being
executed in the virtual environment (not shown). Thus, execu-
tion of the data may be initiated prior to requesting the con-
figuration data, or at least a portion of the configuration data.

For example, different portions of the configuration data
(e.g. properties of the device replicated by the virtual envi-
ronment, etc.) may be requested based on a need therefor,
while the data is being executed in the virtual environment. In
one embodiment, if the data attempts to access an object (e.g.
hardware, software, etc.) during execution of the data, con-
figuration data associated with such object may be requested
prior to allowing the access to proceed. Just by way of
example, if the data references a registry key, configuration
data associated with the registry key (e.g. a value of the
registry key, etc.) may be requested. In this way, the virtual
environment may be configured utilizing configuration data
actually used during execution of the data, thus limiting the
configuration data requested and used for configuring the
virtual environment.

Still yet, it is determined whether unwanted data is
detected, as shown in decision 514. With respect to the
present embodiment, it may be determined that unwanted
data is detected if it is determined that the data executed in the

US 9,306,796 B1

9

virtual environment includes the unwanted data. The
unwanted data may include malware, for example.

In one embodiment, a behavioral analysis may be per-
formed for detecting the unwanted data. For example, results
of'the execution of the data may be stored and the behavioral
analysis may be performed on the results. Of course, however,
it may be determined whether unwanted data is detected in
any manner.

If it is determined that unwanted data is not detected, the
data is transmitted to the destination. Note operation 516. In
one embodiment, the data may be transmitted to the destina-
tion over a network. For example, the data may be transmitted
to the destination over the network if the destination is
coupled to the device on which the virtual environment is
located via a network. To this end, data determined to be
exclusive of unwanted data may be forwarded to an intended
destination of such data.

If, however, it is determined that unwanted data is detected,
transmission of the data to the destination is prevented. Note
operation 518. For example, the transmission of the data may
be prevented by blocking the data. As an option, the data may
be quarantined, discarded, etc. Accordingly, a reaction to the
unwanted data may be performed upon the identification
thereof.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A computer program product embodied on a non-tran-
sitory computer readable medium, comprising:

computer code for dynamically configuring a virtual envi-

ronment located on a first device based on at least one
property of a second device; and

computer code for identifying unwanted data, utilizing the

virtual environment.

2. The computer program product of claim 1, wherein the
virtual environment is dynamically configured by sending a
request from the first device to the second device.

3. The computer program product of claim 2, wherein the
virtual environment is dynamically configured by receiving
information on the at least one property at the first device
from the second device, in response to the request.

4. The computer program product of claim 3, wherein the
information is cached at the first device.

5. The computer program product of claim 4, wherein the
information is cached at the first device for avoiding a need to
subsequently request the information.

6. The computer program product of claim 1, wherein the
first device includes a server device and the second device
includes a client device coupled to the server device via a
network.

25

30

35

40

45

10

7. The computer program product of claim 1, wherein the at
least one property includes at least one of a list of hardware,
a list of software, an operating system identifier, a patch
identifier, and a binary representation of software.

8. The computer program product of claim 1, wherein the
virtual environment includes at least one of a virtual machine,
an emulator and a sandbox.

9. The computer program product of claim 1, wherein the
virtual environment includes a virtual replica of the second
device.

10. The computer program product of claim 1, wherein
unwanted data is identified utilizing an analysis of data per-
formed in the virtual environment.

11. The computer program product of claim 1, wherein the
at least one property of the second device is requested in
response to receipt of data to be analyzed, before the data is
executed in the virtual environment.

12. The computer program product of claim 1, wherein the
at least one property of the second device is requested in
response to receipt of data to be analyzed, while the data is
being executed in the virtual environment.

13. The computer program product of claim 12, wherein
the at least one property of the second device is conditionally
requested based on a need therefore, while the data is being
executed in the virtual environment.

14. The computer program product of claim 1, wherein the
unwanted data is identified by analyzing data in the virtual
environment, utilizing a hierarchical data structure.

15. The computer program product of claim 1, and further
comprising computer code for reacting to the unwanted data
upon the identification thereof.

16. The computer program product of claim 15, wherein
the reacting includes blocking.

17. The computer program product of claim 1, wherein the
unwanted data includes malware.

18. A method, comprising:

dynamically configuring a virtual environment located on
a first device based on at least one property of a second
device; and

identifying unwanted data, utilizing the virtual environ-
ment.

19. A computer program product embodied on a non-tran-

sitory computer readable medium, comprising:

computer code for receiving requests for property informa-
tion associated with a first device, for use in dynamically
configuring a virtual environment located on a second
device; and

computer code for sending the property information to the
second device for use in identifying unwanted data uti-
lizing the virtual environment.

20. A system, comprising:

a first device with a virtual environment located thereon,
the first device operable to dynamically configure the
virtual environment based on at least one property of a
second device, for identifying unwanted data.

#* #* #* #* #*

